KINETICS OF CIILDIIOOD LEAD: THE OMAHA DUPLICATE DIET STUDY. <u>C.R. ANGLE</u>, A J KUEHNEMAN, AND W H MANTON. Univ Neb Med Ctr., Omaha, NE; Univ Texas Dallas, Richardson, TX. ## **ABSTRACT** The goal was to calculate the kinetics of childhood blood lead (PbB) from longitudinal studies and to relate this to experimental data. 21 children 2-3 y.o. living in pre-1955 housing in urban Omaha, a city with low water and air lead but high residual soil lead, provided "field clean" PbB q 3 mo x 4; clean catch spot UA for lead (PbU) and creatinine to estimate PbU/d q mo x 12; duplicate diets for food and water lead (PbF) q mo x 12 and handwipe lead (PbHW; 2 wipes, both hands) q mo x 12. Assays of all samples and blanks were done by TI/MS in an ultraclean laboratory. Results $(X \pm SE)$: PbB 6.4 \pm .3 μ g/dL; PbU 2.5 \pm .1 μ g/d, PbF 4.9 \pm 1.0 μ g/d; PbHW 5.6 \pm 0.3 μ g; Renal CL Pb 64.6 \pm 6.1 mL/m²/d; circulating PbB (PbB x 8% body wt) 57.7 \pm 3.3 μ g; estimated fecal (PbFe) + PbU = 1.5 (PbU) = 3.7 \pm .2 μ g/d; mean residence time (mrt) 20.2 \pm 1.1 d; $t = 14 \pm .8$ d, (cf A.C. Chamberlain et al. 1978; mrt 23 d; t = 14 d). Assuming PbU + PbFe + Pb to bone is 2 (PbU), 2 (2.5 μ g/d) = 5.0 μ g/d absorbed. If absorbed Pb is 35% of ingested Pb, Pb intake \equiv 15 μ g/d \equiv 5 μ g PbF + 10 μ g Pb non-food. PbHW x 2 or 100 mg soil with only 100 ppm Pb will account for 10 μ g non-food Pb. Despite the short t = 14 d, modest increases in non-food Pb will rapidly increase PbB. Supported by NIEHS Grant #5RO1 ES04762. 11 | | | SURJECTS | | | |--------|--|-----------|--------------|--| | | Black | Non Black | Total | | | Male | 3 | 6 | 9 | | | Female | 5 | 7 | 12 | | | Total | 8 | 13 | 21 | | | | Age 2.2 \pm 0.4 y
PbB 6.4 \pm 0.3 (2.0 - 16.2) μ g/dL | | | | | | Pre-1955 Housing Lead Hazard Lead Pipes | | 19
1
5 | | | | Poverty | 10 | | | Non Poverty ## **METHODS** Monthly home visit x 12 1990-1992 Duplicate diet for lead, nutritional analysis 24 h food diary Anthropometrics Blood lead (quarterly) Handwipe lead Urine (clean catch) lead and creatinine Dust index All collections field clean; all handling in filtered air chambers; all lead assays by TI/MS isotope dilution # Lead Intake, 2-3 y.o., Omaha | | Gp 1 (15) | | Gp 2 (6) | |---|--------------------------------|---|------------------------| | PbB μg/dL
PbHW μg | < 2 | | <u>≥</u> 2 | | PbB µg/dL
PbU µg/dL¹ | 5.6 ± 0.5
2.5 ± 0.3 | • | 8.6 ± 1.8
2.4 ± 0.5 | | Pb Absorbed μg/d ³ Pb Ingested μg/d ³ | 5.0
15 | | 4.8
14.4 | ^{*}p < .05 Gp 1 vs Gp 2 ¹Urine lead μ g/d = spot urine lead μ g/mg creatinine x 24 h creatinine, predicted by height and age. Viteri FE, Alverado J. The creatinine height index. *Pediatrics* 1970:46:696-706. Predicted PbU μ g/d (n = 252) was 1.8 x PbU measured on 11 collections of 10-24 h. ²Lead absorbed /d ≡ PbU + Pb Fecal + Pb Stored ^{= 2.0 (}PbU) ³Assumes 33% absorption. If 10% absorption of non food lead, total ingested lead \approx 38 μ g/d # Blood Lead Predicted by Handwipe at Constant Food Lead and Dust Index ## Food and Non Food Lead | | Gp 1 (15) | | Gp 2 (6) | |---|----------------------------------|----------------|---------------------------------| | PbB ug/dL
PbHW µg | < 2 | | <u>≥</u> 2 | | Pb Ingested µg/d -Pb Food µg/d Pb Non Food µg/d | 15.0
<u>-6.5</u> ± 0.6
8.5 | • | 14.4
<u>4.9</u> ± 0.7
9.5 | | | Environ | mental Sources | | | Pb HW μg² | 6.5 ± 0.6 | • | 3.5 ± 1.1 | | Pb Play Floor μg/m ² | 62 ± 12 | | 90 + 54 | | Pb Sill µg/m² | 749 ± 163 | | 714 ± 690 | | Home Index ³ | 6.0 ± 0.7 | | 4.8 ± 1.1 | | Other ⁴ | | ns | | ¹Pb Food/1000 kcal = 6.7 ± 0.7 (Gp 1), 4.6 ± 0.6 (Gp 2) μ g/1000 kcal ## **Kinetics** | | Omaha 2-3 y.o. | | | Chamberlain - Adults ⁵ | | |---|----------------|---|----------------|-----------------------------------|--| | n | 15 (Gp 1) | | 6 (Gp 2) | 3-5 | | | PbB µg/dL | 5.6 | * | 8.6 | ²⁰³ Pb | | | PbU µg/d¹ | 2.5 | | 2.4 | | | | Pb circ μg ² | 48.8 | * | 78. 6 | | | | Renal C _{Pb} mL/m ² /d ³ | 71.8 | * | 43.7 | 516 | | | $T 1/2 days \pm SD^4$ | 12.6 ± 3.7 | * | 18.2 ± 2.2 | 15.4 ± 6.0^{7} | | *p < .01 Gp 1 vs Gp 2 1 PbU/d = PbU μ g/mg Cr x 24 h creatinine predicted by height and age. ²PbB circulating = PbB μ g/L x (8% body wt, kg). ³Renal clearance Pb mL/m²/d = T 1/2 = .693 mean residence time (mrt) mrt = PbB circulating ug = PbB circulating ug Pb excreted/d 1.5 (PbU μg/d) ⁵Chamberlain AC, Heard MJ, Little P, et al. Investigations into Lead from Motor Vehicles. United Kingdom Atomic Energy Authority, November 1978. Ref 5, Table 8.4 and p 92: Renal clearance = 3.82 mL/h/1.8 m² = 92 mL/d/1.8 m² = 51 mL/d/1.0 m² Ref 5, Table 9.5 *** (3) ²Handwipe lead = total lead, 2 "wet wipes," all surfaces, both hands ³0 = minimal lead risk: 10 = maximal ⁴No significant differences Gp 1 vs Gp 2 in demographics, stature, nutritional intake, monthly dust index, lead in soil $\mu g/g$, air duct $\mu g/g$, door mat $\mu g/mat$, tap water (peak = 2.2 $\mu g/L$). Annual air lead, central monitor, .05 \pm .005 μ g/m³. At respiratory volume 8 m³/d, intake = $0.4 \, \mu g/d$. | fn monthly PbB | | $ss = 15^*; n = 82; df$ | | | |----------------|---------------|-------------------------|--------------------|----------------| | · | | SE | p | r ² | | Intercept | .7651 | .1469 | .0001 | .06 | | | β | | | | | in PbHW | .2792 | .0607 | .0001 | .29 | | in PbF | .1578 | .0730 | .03 | .08 | | in DI | .0 787 | .0200 | .0002 | .23 | | | | | adi r ² | .46 | *Excludes the 6 children of Gp 2 with PbHW μ g \geq 2, whose monthly PbHW and PbF did not predict PbB. # **CONCLUSIONS** In 21 Children 2-3 y. o., PbB 2-16.2 µg/dL - 1. T 1/2 PbB 12-18 d, - Similar to Adult T 1/2 203Pb - Increases with PbB - 2. Absorbed Lead (est) 5 μg/d - 3. Ingested Lead (est) 15 µg/d - Food Lead 5 µg/d - Non Food Lead 10 μg/d - Non Food Lead = 2 x Handwipe Lead - 4. PbB Predictors r² Handwipe Pb .29 Household Dust Index .26 Food Lead .08 (2dj) .46